Literature review:-

N.K. jain et al., (1996), reported niosomes is a drug carrier for better sustained release and stable than liposomes for treatment of different disease including cancer

N udupa et al., (1999), prepared β – cyclodextrin mithotrxate entrapped niosomes for tumour treatment. They use lipid layer hydration method for Preparation of MTX –BCD complex is to niosomes and concluded MTX –BCD complex noisome shown high entrapment effecting about 84% then with plain dry and impure anticancer activity.

Anupriya Kapoor et al., (2011), prepared niosomes with use of different sorbitan esters for anticancer drug aclovir as span 20, 40, 60 and 80 by reverse phase separation method and maximum efficiency of drug release shown by use of span 60 with acyclovir as sustained release pattern

H. C. Vadlamudi et al., (2012), Enlighten of niosomes drug delivery are lot of advantages and their different method of preparation for example ether injection, hand shaking, microfludization, reverse phase evaporation, sonication, formation from proniosomes etc. it will be shows most powerful tool for diagnosis as well as treatment of disease.

Deepika Aggarwal et al., (2005), prepared mucoadhesive niosomal ophthalmic preparation by used two different polymers as chitosan and carbopol coated niosomal of timolol maleate by phase evaporation method. chitosen based preparation shown more sustained release preparation than carbopol.

Barakat H. S. et al., (2009), prepared naftifine hydrochloride alcohol free niosomes gel because alcohol by repeated exposure to skin shown experimental effect. Niosomes gel provided two benefits first drug formulated with cosolvant and secondary, localization of drug at fungal infected area

Chwada Himmat Singh et al., (2011), formulated nimesulide niosomes with characterization and performed stability testing. They describe niosomes prepared by lipid film hydration and ether injection method prepared multilamillar and unilamillar vesicles respectively higher entrapment of drug efficiency by span 60 and cholesterol in 80:70 molar ratio.

Mark Boguniewicz et al., (2003), reported that in AD (atopic dermatitis) characterized by loss of ceramides in horney layer of skin which is not responsible for loss of permeability barrier in skin but also increase sensitivity and susceptibility to colonization of staphylococcus aureus

Hughes J et al., (1999), reported topical corticosteroids although first choice of drug as monotherapy since 1952 but its side effects as skin atrophy, striae, allergic contact dermatitis etc. its use is limited or use with other antipsoriatic drug with combination as vitamin D3 analogue etc.
Zemtsov A. et al., (2013), reported cream of desoximethasone with citrizine in emu oil base give better result for treatment of psoriasis atopic and stasis dermatitis than other cream which contain propylene glycol as base.

Prakash Goudanavar et al., (2012), prepared perindopril erbumine (ACE inhibiter) loaded proniosomes gel by phase conservations techniques by using different ratio of surfactants. In vitro study shown decrease release of peridopril erbumine from gel formulation with surfactant lipophilicity increases.

Abbas pardakhty et al., (2013), reported niosomes for vaccine and gene delivery decided nanoniosomes delivered gene in cells for treatment of cancer and other disease at hereditary level and enhance the immunogenicity by protection through prevention of antigen degradation in body and side specific.

Alsarra I. A. et al., (2005), prepared proniosomes of transdermal preparation of ketorolac and performed drug permeation by use of Franz diffusion and concluded improved drug permeation and reduce lag time. If use of span 60 surfactant more drugs permeate through skin than tween 20 surfactant.

Nazia khanam et al, (2013), reported niosomes are amphiphilic in nature hence capable of entrap both type drug as hydrophilic and lipophilic properties for long period of time. Niosomes mainly prepared by surfactant as ether linked, ester linked, sorbitan esters, alkyl amides, fatty acids and amino acids, cholesterol etc. Different niosomes prepared different techniques

Ankur Gupta et al., (2007), prepared captopril an antihypertensive drug proniosomes transdermal system for extend release time by use phase separation coacervation technique. Proniosomes is encapsulated 66.7 to78.7 % captopril.

A Chandra at el., (2008), prepared piroxicam proniosomes based delivery system which is NSAID for various musculoskeleton disorders. Piroxicam can produce GIT disorder when taken orally. Proniosomes showed maximum permeation through skin, and then it may be given alternative route through skin.

Sudhamani T. et al., (2010), enlighten proniosomes a promising drug carrier overcome physical stability of niosomes. it is formulated by spraying and slurry method after that proniosomes converted in to niosomes.

Jadupati malakar et al., (2011), reported proniosomes is better carrier for drug delivery system, these are coating of non ionic surfactant and quickly converted into niosomes on applying site with much better then niosomes by providing optimal flexibility, unit dosing as well as stable than conventional niosomes.
Geeta Aggarwal et al., (2011), reported proniosomes more effective for controlled and sustained release pattern, stability of drug carrier also more in these systems. In future scope, primary in the area of transdermal drug delivery system will be more promising delivery system.

Shamsheer Ahmad S. et al., (2011), formulated & evaluated proniosomal gels of lisinopril dihydrate as transdermal preparation with use of lecithin, cholesterol, surfactants. Prepared proniosomal gels have shown physical characterization with in permissible limits with zero order release pattern.

Munish Ahuja et al., (2011), prepared anti inflammatory activity of gugulipid loaded proniosomes gel for bypass of systemic side effect and increased their therapeutic activity.

Udasi T. A. et al., (2012), enlighten proniosomes as drug powder of water soluble carrier particle which are coated with surfactant. These dehydrate product converted in to niosomes immediately when agitated with hot aqueous medium. These systems overcome vesicular problem such as aggregation fusion and leakage of drug.

Dubey A. et al., (2012), prepared of proniosomes loaded lornoxicam by lipid hydration technique at different ratio of cholesterol and surfactant and evaluated of proniosomes by performed FT-IR, angle of repose and Scanning Emission Microscopy.

B. G. Goud et al., (2012), prepared proniosomal preparation of megesterol acetate with Span 20-taken 30:70 % with cholesterol and ethanol by using of slurry method. Megesterol acetate orally absorption is very less from gut. It use manage & treatment of various women disorder.

Sambhakar S. et al., (2012), prepared sorbitol based proniosomes of cephalosporin for better permeability and stability of oral dosage form. Preparation of drug free flowing proniosomes sorbitol or maltodextrin walls soluble carrier coated with surfactant

Mishra S et al., (2013), formulated and optimized of proniosomal gel for transdermal delivery of naproxen which is used as NSAID for rheumatoid disease. She was used 3^2 factorial designs for optimization of various formulation variables

Pazoki et al., (2003), performed the effect of different agent like diazepam, indomethacin, and garlic extract etc, on mice skin at induced dithranol effects through the skin biopsy of topical applied dithranol examined after 48 hr. or 96 hr. and suggested all of these drugs reducing dithranol induced damaged on skin.

Tencomnao T. et al (2009), investigated epidermal growth factor receptor (EGFR) is responsible for psoriasis pathogenesis and shown a human keratinocytes cell has induced down regulation of the EGFR by Dithranol preparation.

Khan S. et al., (2012), performed Preformulation study of dithranol loaded solid lipid nanoparticles as categories of keratolytic and used for treatment of psoriasis.