• REVIEW OF RELATED LITERATURE:

 • Kemp K. K. et al. (1992): “Teaching GIS in Geography”, Studied and concluded that the GIS instruction has been introduced into geography programs in response to a rapidly expanding demand. The course objectives are choosing an appropriate balance between education and training and between technology and application. They also discussed that geography should emphasize the generic issues. This argument leads to certain conclusions: that GIS courses in undergraduate geography should emphasis education concepts over training in hardware and software, that the conceptual content of lectures should drive the practical content of laboratory exercises, and that course content should progress from simpler to more complex concepts. It described the NCGIA Core Curriculum project and discussed its potential. Not on the desirable content of a GIS course in geography, but also on the relationship between that course and the wider aims of an undergraduate geography program. It is a unique opportunity for rejuvenation of the geography curriculum.

 • Crechiolo, Angela Louise, (1997): “Teaching Secondary School Geography with the use of a Geographical Information System (GIS)”, Studied and stated that the GIS education community plays an essential role in the development and support of GIS activities at all levels of education. The GIS community is also responsible for setting and maintaining a research agenda which ensures that the application of GIS technology meets the changing and diverse needs of its users. The paucity of teaching resources which specifically apply GIS technology to the teaching of geography. This was achieved by outlining how GIS has made its way into the Ontario secondary school geography classroom, in particular through a three-step process of teacher awareness, teacher in-service training and curriculum development. It first introduced a series of conceptual and demonstrative frameworks which illustrated the link between GIS functionality and the subject domain of geography. These frameworks, although useful as knowledge organizers did not satisfy the specific needs of teachers already in-service in terms of classroom implementation. This teaching exercises a model GIS curriculum. This model GIS curriculum introduces a set of comprehensive exercises which guide the instruction of geography within a GIS context. This link is explored through a series of projects that apply the IDRISI for windows software to problems of geographical enquiry and the representation of physical and human landscapes. Also integral to the design of the curriculum is the notion of the novice expert transition which is defined by three levels of map reading and geographical enquiry.
• **Caldwell Alison (2000): “Remote Sensing in the School Curriculum”**, Studied and concluded that the advances in modern technology and the Government initiatives are providing great opportunities for the expansion of remote sensing in schools. Vital skills and knowledge can be taught through the NC in Science, Geography and IT using remote sensing. Imagery can motivate young people, encouraging them to take up careers in EO. New resources such as the BNSC CD-ROM, Window on the World are appearing at a critical time in terms of the changes taking place in education in England and Wales.

• **Wikle Tholmas A. (2000): “GIS Education through Certificate Programs”**, Studied and concluded that the future of GIS in government and industry is clearly dependent on the availability of trained professionals who work at various levels to design, operate and manage the implementation of GIS. Certificate programs can address this need by linking courses in logical sequences tied to specific objectives.

• **Mohamed Azlinah H. (2001): “Executive Support System For Public Higher Education Institutions In Malaysia”**, Studied and concluded that the framework of an adaptive executive support systems described above attempts to show the dimensions and scope of ESS in a way that will promote the further development of ESS in the administration of public institutions as well as other agencies in Malaysia. This article has provided the understanding of strategic decisions as well as the guideline in the architecture of basic information database systems needed in a public in order to provide the suggested executive support systems framework of an IPTA with correct and reliable information. It also outlines the executive knowledge analysis, which took into consideration the main factors within the framework of a strategic decision-making in an IPTA.

• **Venkatrchal P. et al. (2001): “An Educational and Training Tool for GIS and Remote Sensing”**, Studied and concluded that the GIS applications are growing rapidly. With the availability of high resolution remote sensing data, desk top GIS and Internet based GIS, awareness is increasing among the user community on the capabilities of GIS technology. It also discusses the details of a multimedia based GIS tutor developed at CSRE, IIT, Bombay, India. It is built using Macromedia Authorware 5.0. The topics on GIS and remote sensing are hierarchically grouped into main sections and subsections.

• **Venugopal K. et al. (2001): “Geomatics Education in India- A View Point”**, Studied and concluded that the effective introduction of GIS into the education process by the high cost
of hardware, software and the teaching material. Almost all Universities in the developed countries generate their wealth through their advanced research in collaboration with the industry. India spends less than 1% of GNP on research and many technical institutions have been struggling for years to co-ordinate with industries. Research work should be made available to GIS learners through internet facilities and communication channels. Universities start utilizing the high-end technology of remote sensing and include this specialty as one of the domains of civil engineering/geology/geography departments. Institute should arrange sessions like “career talks” from industrialists as it will help the student community to keep abreast with the latest situation in GIS field apart from GIS seminars and Workshops. Further the government should high level national GIS academy having a wide network of Universities, Industry and private GIS institutes. The recent formation of “Indian University Consortium for Geographic Information” during ICORGT, associations, is a commendable step for GIS education in India. Modalities can be worked out for ISRO to extend its technical and moral support to many non-technical Universities. As a final word the institutes involved in GIS education must understand that “Communication and Co-operation” are the two major aspects in providing effective GIS education.

- **Johansson Tino (2002), “GIS in Teacher Education: Facilitating GIS Applications in Secondary School Geography”,** Studied and concluded that GIS have not been widely introduced to secondary school geography education and teachers had not received any in-service training. There will be a huge demand for GIS training for in-service training which clearly underlines the potentials of GIS in the classroom and avoids the use of unfamiliar exercises and data. GIS education involves two aspects, namely how to teach about GIS and how to teach with GIS. Both aspects must be present in in-service teacher training.

- **Johnson A. B. (2002): “Education and Program Development”,** Studied and concluded that the current state of GIS education provides the basis for a continued discussion about the state of GIS education in Europe begun during the AGILE meeting in 2001 in Brno. It also continues the discussion introduced by James Petch in “IT Tends and GIS Education and Training” at EUGISES 2000 concerning the link between changes in IT and the pressures with rapidly changing technology and the needs of business for expertise in IT.

- **Carvalho V. M. S. G. de et al., (2002): “Practical Image Interpretation Guide Brazil Geography Subjects”,** Studied and concluded that image interpretation guide development was
ruled by the desire of a group composed of professors and future teachers to implement positive changes in boring teaching-learning process. It is important to point out how essential it is to offer quick update courses and to qualify teachers in order to make them familiar with the use of this technology and its potentials. Next step to be implemented is to develop this material digitally, making it possible to improve quality, to provide more information’s like images, photos, tables, charts etc. This effort means to impress an advance to which schools are already being prepared, provided that we can find computers installed all over Brazilian territory.

- **Dwivedi S. K. (2002):** “Role of GIS in the Rural Development: Vision for New Millennium”, Studied and concluded that the 70 percent of the India’s population resides in rural areas and their contribution to the national economy is substantial, emphasis on the development of rural areas, for uplifting the socio-economic status of the people, is a prime area of concern in the overall development strategy of the country.

- **Johansson Tino (2002):** “GIS in Teacher Education-Facilitating GIS Applications in Secondary School Geography”, Studied and concluded that most of the teachers in the survey were not familiar with GIS technology and had not received any in-service training on its use in education. The universities and teachers colleges will have to provide the teachers an in-service training which clearly underlines the potentials of GIS in the classroom and avoids the use of unfamiliar exercises and data. A central issue in the facilitation of GIS applications in secondary schools is the availability of GIS software and data. Most upper secondary schools have modern computers that can be used to acquire GIS data and view thematic maps via the Internet. The teachers are experienced in using the Internet in their lessons so it would be a natural way to introduce basic GIS applications to them.

- **Ramachandran S. (2003):** “Application of Remote Sensing and GIS”, studied and concluded that the coastal ecosystems are of great importance and of immense value to mankind in the present and in the future. The satellite based sensors provide valuable information useful in assessment, monitoring and management of coastal ecosystems. The information, which is derived, can be very useful in the coastal ecosystem management, which is greatly required for the sustainable use, development, and protection of the coastal and marine areas and resources.

- **Ulrich Bosler (2003):** “The use of geographical information systems in science education: Lessons from research in German schools”, Studied and concluded that GIS and satellite images are used in a broad range of scientific and social scientific contexts and the level
of use continues to grow. GIS provides an effective example of the use of the internet in science education and provides opportunities for research into how student learn through processing satellite images.

- **Bednarz Sarah W. (2004): “Geographic Information Systems: A tool to support geography and environmental education?”**, Three existing justifications were reviewed and evaluated, and weaknesses in at least one, the case for GIS in geography, were identified. Next, the reasons affecting the slow diffusion of GIS were examined in an attempt to link the justifications with barriers, perceived or real, hindering adoption of GIS. Pedagogy emerged a persistent problem. The implications of this discussion for geography and environmental educators are significant and focus on building a stronger justification for GIS as a support for spatial thinking and on developing the pedagogy to do that. The value of working with GIS to explore the local environment needs to be placed within larger education objectives, and those should relate to subject-specific goals, not school-to-work transition issues exclusively. Students *may* be taught spatial thinking through GIS if certain instructional strategies are in place. These instructional strategies may include teaching in different contexts and teaching for understanding by explicitly emphasizing abstract representations, cognitive and reasoning.

- **Duke Barbaeree Ash (2004): “Building a Successful GIS Program in a Middle School”**, Studied and concluded that their mission is educating and preparing future teachers should be to equip every pre-service teacher with the tools they need to be successful, creative and empowered. Unfortunately, there is very little research done in this field. “There are a number of unanswered questions about GIS, many of the issues related to implementing GIS in US classrooms have scarcely been considered, including pre-service teacher education, spatial cognition, affect, content knowledge acquisition, process skills, assessment, instructional models (Baker and Bednarz 2003). The purpose and need for the curricular content teachers can accomplish more in the classroom management easier. The more students understood that GIS is one such tool that will hook students on the goals and content that teachers want and need them to grasp. Since community and finding our place in the world is human nature.

- **Raju P. L. N. (2004): “Fundamentals of Geographical Information System”**, Studied and concluded that the Geographic Information System (GIS) is used by multi-disciplines as tools for spatial data handling in a geographic environment. The handling of spatial data usually involves processes of data acquisition, storage and maintenance, analysis and output. The
software technology used in this domain is Geographic Information Systems. GIS is being used by various disciplines as tools for spatial data handling in a geographic environment.

- **Sausen T. M. et al. (2004): “Educa SeRe Project-Geography Teaching in Grammar and High School using Remote Sensing Data and GIS”**, studied at Pilot Project level and concluded that the school teachers enjoyed very much the experience and they will continue to use remote sensing information in the classroom and they are very interested to attend additional courses. The students and the teachers took advantage of this opportunity to introduce scientific methodology and procedures to the students. In the exposition are there was a PC available, with all students presentation files, to be accessed by the exposition visitants. The result of Pilot Project was a very good opportunity for the Educa Sere Project to improve the information about the use of remote sensing in classroom. A consequence of this study, INPE and UNISINOS another training course and will develop the same kind of project with others schools in the region. It will be given a course (44 hours) about how to use GIS techniques in classroom, using the free software’s SPRING and TERRA view developed by INPE.

- **Pick James (2004), “Geographic Information Systems”**, Studied and concluded that the GIS is has foundation in government sector and grew in corporate sector and still it is expanding in all sector. An important example of emerging research in GIS is cost-benefit analysis. Many referent disciplines contribute conceptual theories and concepts to the study of GIS in Business, including information sciences, geography, earth science, computer science, economics, and business disciplines. Because the academic field of GIS for business school investigator is still new, it offers great potential for research and publication.

- **Kwan M. P. (2004): “GIS Methods in Time-Geographic Research: Geocomputation and Geovisualization of Human Activity Patterns”**, Studied and concluded that Despite the usefulness of time geography in many areas of geographical research, there are very few studies that actually implemented its constructs as analytical methods up to the mid-1990s. With increasing availability it is now more feasible than ever before to operationalise and implement time-geographic research. Implementation of the PESASP simulation model was remarkable in many regards. Operationalisation of analytical time-geographic methods, however, has been hindered by the computational demand of the tasks.

- **Bowman Eric et al. (2005): “Developing Teacher Capacity to Implement GIS in the Geography Curriculum”**, Since Geography standards, especially in Texas, call for the use of
GIS, teachers are just beginning to take hold of this technology and are beginning to go through a widespread growth process in learning about GIS and how to implement it into the classroom effectively. Science has gone through a revolution in how science lab is being taught. Five years ago, most science teachers would not have conducted a lab with probes. Now probes and probeware are being used to challenge students to think critically about science concepts and take ownership of their learning in a different and sometimes better way than with traditional methods that most science teachers have used in laboratory. In order for GIS to be used throughout, we need to implement these expectations as science has done.

• **Kerski Joseph J. (2005): “The Implementation and Effectiveness of Geographic Information Systems Technology and Methods in Secondary Education”,** Studied and concluded that Curriculum materials need to be developed with an easy-to-use GIS package capable of performing robust spatial analysis and problem solving. The geographic perspective is in high demand partly because of the success that GIS users have had in solving problems. Teaching with GIS is used as the primary method of integrating geographic thinking into other disciplines. Finally and perhaps most importantly, the approach to GIS should not be, "How can we get GIS into the curriculum?" but "How can GIS help meet curricular goals?" GIS allows students to do geographic and scientific analysis. For GIS to be effective, schools must build an environment of curiosity about investigating the world. Downs (1994) advocated an empirically and theoretically sound, practical, relevant base of knowledge for geography.

• **Campbell James B. (2007): “GloVis as a Resource for Teaching Geographic Content and Concepts”,** Studied and concluded that the GloVis, although designed as a tool for browsing the archive of Landsat and related remotely sensed imagery, can serve as an archive of satellite imagery suitable for illustrating geographic content and concepts. GloVis provides a useful source for imagery illustrating geographic events and concepts. Its ease of access assures its availability for teachers. The range of the archive spans several decades, so it assures long-term landscape changes.

• **Erebus International (2008): “A study into the Teaching of Geography in Years 3-10”,** While now studied by relatively few students at senior secondary levels, there is still a strong expectation in the curriculum documents of all states and territories that in the compulsory years of schooling, young people will be exposed to key concepts of Place and Space, specific skills such as map reading and the development of higher order skills of analysis and
interpretation of data to assist them to understand the world they live in. This study also focused on a contribution towards the ongoing debate about the development of a future national approach to geography, and makes the recommendations to future this process.

- **Banskota T. R. (2008): “Application of GIS as Educational Decision Support System (EDSS)”**, Studied and concluded that the phases and process of building the educational decision support system through GIS in HSEB Nepal. It illustrates the successful implementation of the planning process taking decision based on GIS technology. GIS as DSS have been proved very important in performance thrusts on rational decision making in HSEB by providing the planners integrated geographic scenario HSS where they are located. GIS can help the educational planners develop suitable plans in this respect. The GIS exactly indicates point coordinates and other spatial data elements in each HEIs, and EMIS incorporates other socioeconomic and educational information of the given area.

- **Hung Ting-Yen et al. (2008): “Application of Internet-GIS to Senior High Schools GIS Education”**, one of the core learning targets is the application of geographic information in daily life. One major obstacle is the wide-spread myth that GIS is an expensive hi-tech toy for professional. On the other hand, more and more teachers begin to utilize free and internet resources such as Google Earth and Google Maps in instructions. The advantage of these resources is that they can be easily accessed by most teachers, also, high resolution remote sensing images can be over layered with vector layers. Utilizing ArcGIS JavaScript Extension for Google Maps released by ESRI and geoprocessing services that published by ArcGIS Server.

- **Jovanovic Verka (2008): “The Application of GIS and its Components in Tourism”**, Studied and concluded that the GIS use has so far provided successful results which promote importance over technology. Each identification combines related objects like roads, building, or watercourses. To integrate tourism data the traditional layer model with layers like hotels, restaurants, sights and further infrastructure layers. GIS is used to provide: digital basic map, digital files for analyzing and mapping, digital files for mobile mapping and modeling, digital multimedia. GIS has three types of applications in inventory of zoning areas, land uses, protected areas, in analysis application.

- **Mesgari M. S. et al. (2008): “GIS Applications in Public Health as a Decision Making Support System and It’s Limitation in Iran”**, Studied and concluded that the one of the most important indices of defining general welfare and quality-of-life of people in the world
is physical and mental health of individuals. Many applications of GIS in public health are developed that include management of available health resources, predication, simulation and management of epidemics and monitoring and control of diseases. On the other hand, time plays an important role in health affairs especially in the time of disasters. Obstructions and difficulties of using GIS in decision making concerning public health, in special situation of IRAN, are examined and some suggestions are proposed.

• Nayak Debendra Kumar et al. (2008): “Progress in Indian Geography”, Studied and concluded that India is in the process of linking its space and remote sensing programme with emerging trends in Sensor Systems include imaging microwave radars, Lidars, Radar altimeters: Scatterometers, geodynamic instruments, imaging multispectral radiometers, earth radiation budget radiometers, rain radars, atmospheric temperature and humidity sounders. Links between the scientific communities and the space agencies need to be improved. Close collaboration between academic institutions and central/state government departments will further improve remote sensing education. Various remote-sensing sources should also be extended at various disciplines like geo-sciences, hydrology, marine science, agriculture, urban planning and engineering, etc.

• Demirci A. et al. (2009): “How to Make GIS a Common Educational Tool in Schools: Potentials and Implications of the GIS for Teachers Book for Geography Education in Turkey”, Studied and concluded that the published book of GIS book for geography teachers including DVD, ArcView 9.2 with digital data, handouts and exams in PDF format is very helpful and makes the potential to the teacher himself and students. Initial amount of the book was reduced gradually for the purpose of easier purchasing. The secondary geography teachers were the main target group of the book, great efforts were made to reach both geography teachers working at secondary schools and teacher candidates studying at geography departments. The main obstacles confronting the successful incorporation of GIS in geography lessons in Turkey are lack of time for teachers to learn GIS, lack of time to learn how to use GIS in the classroom, unwillingness of teachers to utilise GIS technology, and the difficulties of using GIS software. A number of strategies have been pursued to help teachers utilize the book so that they may be able to incorporate GIS into secondary school geography lessons in Turkey in a more effective and faster way. The book has met one of the most urgent
needs in Turkey by supplying geography teachers with sufficient knowledge, skills, software, data and exercises.

- **Lindner-Fally Michaela (2009):** “Digital: Earth: At Center for Teaching and Learning Geography and Geoinformatics”, Studied and concluded that the digital: earth: at has to be considered as a growing information and communication platform for the geographic education community. International networking is considered as important to general educational and didactical approaches applied in innovative geography teaching. Digital: earth: at is just at the start of a journey.

- **Desai C. G. et al. (2009):** “Application of remote sensing and geographic information system to study landuse/landcover changes: A case study of Pune Metropolis”, Studied and concluded that the efficiency of Remote Sensing and Geographic Information System as a tool in the study of landuse/landcover changes. Particularly in the absence of required data from the local authorities, it gives a fairly a good understanding of landuse/landcover changes for a period of two decades.

- **Viehrig A. et al. (2009):** “GIS@school-new didactical aspects of using GIS in geography education” Studied and concluded that the geographical information systems are an integral though sometimes invisible part of daily life and are used in various fields such as research, planning and administration. Nevertheless, the GIS use as yet is only inadequately implemented in the school context, especially in non-grammar school and lower secondary education. Based on an overview of the current situation of GIS use in schools in Germany, new concepts for fostering spatial behavior competence through the use of GIS.

- **Aydan Faith and Huseyin Kaya (2010):** “Geography Teachers’ Views Towards Vocational Geographic Information System (GIS) Seminar”, Studied and concluded that a majority of the geography teachers joined the research expressed that the vocational education helped them knowing GIS better, they understood the reasons of using GIS in geography lessons better along with the GIS education. The seminar provided them in acquiring knowledge and skills in using GIS. Acquired them how to use GIS software with its general constituents. Understood the importance of GIS in terms of geography science. There has not been a meaningful difference in geography teachers’ views towards GIS in the vocational seminar according to “gender”, “age” and “vocational” experience variables according to research results.
Hung Ting et al. (2010): “Application of Internet-GIS to Senior High Schools GIS Education”, Studied and concluded that to facilitate the implementation of new standard, many teaching resources for GIS education have been created, yet teachers and students in high schools still feel confined in accessing GIS. One major obstacle is the wide-spread myth that GIS is an expensive hi-tech toy for professional. On the other hand, more and more teachers begin to utilize free and internet resources such as Google Earth and Google Maps in instructions. The advantage of these resources is that they can be easily accessed by most teachers, also, high resolution remote sensing images can be over layered with vector layers, such as road network and administrative boundaries.

Mohd. Hasmadi Ismail (2010): “Empowering GIS Education Program: Is GIS as a Science, Art or Tool?”, Studied and concluded that the basis nature of GIS is built upon an expectation to solve a specific problem using geodata and GIS. a GIS may be considered as a science, an art or tool, depend on (i) who a GIS developers are, whether they are GIS specialists graduated or GIScientists as postgraduate students .(ii) what are the capabilities of GIS. In general GISs have three main capabilities: spatial data management, spatial data analysis, spatial data visualization. (iii) What such a system might be used for, whether GISs are used to solve non-complex problem or applied in solving sophisticated task. Without conceptual courses, the use of GIS is likely only to degenerate to data management and map making.

Cheung Yick et al. (2011): “Enable Spatial Thinking Using GIS and Satellite Remote Sensing-A Teacher-Friendly Approach”, Studied and concluded that GIS should mainly act as a platform integrating knowledge and facts of various subjects, provide simple tools to study the interrelations among the collected facts combine the observations with taught knowledge and draw conclusion for the study accordingly.” The Project Team attempted to implement the foundational principle by: 1.) Developing simple software tools to integrate map, satellite images and aerial photographs, as well as GIS data into a common geographical data visualization platform, 2.) Teaching the frontline teachers to exploring the spatial relations among map-based data within the platform, 3.) Encouraging and assisting the teacher to implement the skills in their interested topics and actual classroom. More than 90% of participants agreed that the deliverables are valuables in the actual classroom teachings. The actual implementations also suggested that the deliverables could be applied in different contexts
of geography teaching. The developed GIS & RS platform possesses unique contributions to “bottom-up” geography teaching using GIS.

- Kolvoord Robert A. et al. (2011): “Using Video case studies to assess the impact of the use of GIS on secondary students’ spatial thinking skills”, Studied and concluded that the results of research to date on the impact of geospatial technologies on students’ spatial thinking skills. The students are clearly addressing sophisticated spatial concepts and they’re demonstrating the ability to appropriately adjust their research question in response to the availability of data and their preliminary results. Coursework with some relevance is highly engaging and motivating. However, many questions remain to be answered.

The present research is differing from the above said research, in this research researcher will find basically the importance of GIS techniques in teaching of geography at secondary level schools of Indian school type. The uniqueness of this study is this type of study is never before carried out in Maharashtra and India especially in teaching of geographical lessons at ninth standard for secondary schools of SSC Board and CBSC Board. So researcher accepted this challenge to do this study.

- **RESEARCH PROBLEM:**

- **DEFINITIONS OF THE TERM:**
 1. **GIS Techniques:**
 Conceptual Definition:
 A geographic information system is a system designed to capture, store, manipulate, analyze, manage, and present all types of geographical data. Modern GIS technologies use digital information, for which various digitized data creation methods are used. The most common method of data creation is digitization, where a hard copy map or survey plan is transferred into a digital medium through the use of a CAD program, and geo-referencing
capabilities. With the wide availability of ortho-rectified imagery (both from satellite and aerial sources), heads-up digitizing is becoming the main avenue through which geographic data is extracted. Heads-up digitizing involves the tracing of geographic data directly on top of the aerial imagery instead of by the traditional method of tracing the geographic form on a separate digitizing tablet (heads-down digitizing).

Wikipedia: The free encyclopedia (2012)

Operational Definition:

GIS techniques are also known as tools of GIS, which is designed to collection, storage, manipulation, analyzing and presentation of all types of geographical data. This technique transfers the geographical data (hard copy information) into the digital format through the computer and related technology. This is further used for decision making process by the planners and policy makers. So, researcher is going to use some of the techniques in present research to study the effectiveness in geography teaching and geographical achievement.

2. **Geographical Achievement:**

Operational Definition:

Achievement is something accomplished successfully, especially by means of exertion, skill, practice, or perseverance in geography. The overall marks obtained in geography subject by students in standard IX examination.

3. **Teaching of Geography:**

Operational Definition:

The teacher imparts the Geographical skills, information and knowledge to the students by using different techniques in the school.

4. **CBSE Board:**

Operational Definition:

The schools affiliated to the Central Board of Secondary Education (CBSE) set up by the Central Government.

5. **SSC Board:**

Operational Definition:

The Secondary School Certificate (SSC) schools affiliated to the Maharashtra State Board of Secondary and Higher Secondary Education set up by the Govt. of Maharashtra.
6. **Secondary School:**

 Operational Definition:

 The school has organized setup of the building and infrastructure to impart the knowledge, skills and information to pupils. The school provides the education for standard fifth to tenth is known as secondary school.

7. **A study:**

 Conceptual Definition:

 The activity of learning or gaining knowledge either form books or by examining things in world.

 Operational Definition:

 A study means knowing and understanding about the level of Geographical Achievement in school student and organization of experimental programme.