1) Abdollah GP., et. al. (2010), studied the wound healing activity of Malva sylvestris and Punica granatum in alloxan induced diabetic rats. The diethyl ether extract of *M. sylvestris* and *P. granatum* flowers were used to evaluate the wound healing activity at 200mg/kg/day dose in alloxan-induced diabetic rats. The extract of *M. sylvestris* effectively stimulates wound contraction as compared to control group and other groups.

2) Agarwal PK., et. al, (2009), evaluated the wound healing activity of extracts of *Plantain Banana* (*M. sapientum* var. *paradisiaca*, MS) in rats. Wound healing activity of MS was studied in terms of (i) percent wound contraction, epithelization period and scar area; (ii) wound breaking strength and (iii) on granulation tissue in excision, incision and dead space wound models respectively. The rats were given graded doses (50-200 mg/kg/day) of aqueous (MSW) and methanolic (MSE) extracts of MS orally for a period of 10-21 days depending upon the type of study. Both the extracts showed good safety profile.

3) Ananth KV., et.al, (2010), evaluated the effect of methanol and chloroform extracts of *Bauhinia purpurea* on experimentally induced excision, incision, burn and dead space wound models in Sprague Dawley rats. The result shows that In the excision and burn wound models, animals treated with high doses of methanol and chloroform showed significant reduction in time taken for epithelization and wound contraction (50%) compared to control.

4) Asuti Naveen , et. al,(2010) , studied the wound healing activity of alcoholic extract of root bark of *Crataeva nurvala* on incision, excision, dead space (granulation), hydroxyl proline wound models at two different doses (150 and 300 mg/kg). Significant increase in skin breaking strength, granuloma breaking strength, wound contraction, hydroxyl proline content and dry granuloma weight and decreased in epithelization period was observed.

5) Bafna Anand et. al, (2009), studied the Antioxidant and immunomodulatory activity of the alkaloidal fraction of Cissampelos pareira Linn. in the in-Vitro and in-Vivo
models. The result shows that the AFCP possess strong Antioxidant activity and significant immunosuppressive activity at lower doses (25 and 50 mg/kg) while no activity at higher doses (50 and 75 mg/kg).

6) Barua CC., et. al. (2009), studied the wound healing activity of methanolic extracts of leaves of *Alternanthera brasiliana* Kuntz using in vivo and in vitro model. In excision wound model, compared to the control group, per cent contraction of wound was significantly higher in *A. brasiliana* (5% w/w ointment) treated group. In incision wound model, tensile strength of the healing tissue after treatment with *A. brasiliana* was found to be significantly higher compared to the control group indicating better wound healing activity of the test plant. The results suggested that methanolic extract of *A. brasiliana* possess significant wound healing potential in normal wound.

7) Charde MS., et. al,(2004), studied the wound healing activity of Tilvadi ghrita; a herbal formulation. The results shows that the Tilvadi ghrita increases the tensile strength which is significantly improved over the untreated wound.

8) Dash GK., et. al,(2011), studied the wound healing effects of a new Polyherbal formulation by using excision and incision wound models. Six Polyherbal ointments containing methanol leaf extracts of *Ageratum conyzoides* Linn., *Argemone mexicana* Linn., *Heliotropium indicum* Linn and bark extract of *Alstonia scholaris* (L.) were formulated and tested for wound healing activity in rats using excision and incision wound models and skin irritation study. All the groups of animals treated with various formulations exhibited significant (P<0.01) increase in the percentage of wound contraction as compared to the respective control group of animals on different days of the study commencing from Day 8.

9) Esimone CO., et. al,(2005), studied the wound healing effect of herbal ointments formulated with *Napoleona imperialis* (NI) embedded in different ointment bases (anionic, cationic and non-ionic) by using excision wound healing model, on guinea pigs. The wound healing effects of the formulations were compared to that of a standard antibiotic, *Cicatrin*. In all cases, there was a progressive decrease in
wound area with time, indicating an efficacy of the formulations in healing the induced wounds.

10) Hullatti KK., et. al, (2011), studied the diuretic effects of Methanolic extracts of *Cissampelos pareira*, *Cyclea peltata* and *Stephania japonica*. The methanolic root extract of *Cyclea peltata* has shown highest diuretic activity.

11) Ipek Pesin Suntar et. al, (2011), studied the wound healing activity of the aq. Extracts of *Colutea cilicica* Boiss. & Bal. fruits and leaves. The fruit extract treated the groups of animals showing a 78% contraction in wounds, which was close to the contraction value of the reference drug Madecassol (100%).

12) Jain Sachin, et. al, (2009), evaluated the wound healing activity of Polyherbal formulation of roots of *Ageratum conyzoides* Linn. The wound healing property of *Ageratum conyzoides* appears to be due to the presence of its active principles, which accelerates the healing process and confers breaking strength to the healed wound. Further, wound healing activity by Polyherbal formulation was found to be better than ageratum treated groups in rat. It may be attributed to the synergistic action of ageratum constituent and the constituent of other plants present in the Polyherbal formulation.

13) Jaiswal S., et. at,(2004), studied the various plants used for tissue healing of animals. 58 different species of plants used by the local peoples of various region for tissue healing in animals. They are help full in tissue healing, fracture healing and healing of nervous tissues in animals.

14) Jasmine S., et. al, (2011), studied the Diuretic activity of Ethanolic, Chloroform and Ethyl acetate extracts of leaves of *Erythrina indica*. The activity was compared with frusemide as a standard. The result shows all the extracts have the significant diuretic activity.

15) Mamood AA.,et. al, (2009), studied the wound healing potential of *Lantana camara* leaf extract in experimental rats. Ethanolic extract of *Lantana camara* was evaluated for their wound healing potential in rats. Wound dressed with placebo containing
10% extract significantly accelerate wound healing activity compared to wound dressed with placebo containing 5% extract.

16) Muzhar-ul Islam et. al, (2002), performed Assays on different extracts of C for antibacterial activities. It was observed that root and leaves extracts were promising against gram positive and gram negative bacteria.

17) Narendra N., et. al (2009), studied the wound healing activity of latex of Calotropis gigantean by using excision and incision wound models in rat. Latex treated animals exhibit 83.42 % reduction in wound area when compared to controls which was 76.22 %. The extract treated wounds are found to epithelize faster as compared to controls.

18) Nayak BS., et.al, (2007), studied the effect of laser photo stimulation on wound healing activity. During examination it is observed that the laser photo stimulation can enhances the collagen production in excision wounds using excision wound model in Wister rat model. Helium-Neon laser photo stimulation facilitates the tissue repair process by accelerating collagen production in chronic wounds.

19) Nayak BS.,et .al, (2008), studied the wound healing activity of Lantana camara in Sprague dawley rats using burn wound model. The test group animals were treated with the ethanol extract of Lantana camara (100mg/kg/day) topically and the control group animals were left untreated. Extract treated wounds were healed in about 21 days which is not distinct from the controls. Data suggest that Lantana camara has not wound healing promising activity on burn wound.

20) Pallavi Srivastava., et. al. (2008), evaluated the burn wound healing property of Cocos nucifera. Wound healing property of combination of oil of Cocos nucifera and silver sulfadiazine was compared with silver sulfadiazine alone. Significant improvement in burn wound contraction in the group treated with combination of oil of Cocos nucifera and silver sulfadiazine was observed.

21) Panda P., et. Al, (2010), prepared the topical dosage Forms of Eupatorium odoratum and Evaluated their wound healing activity. The results shows that all the formulations and the normal methanol extracts of Eupatorium odoratum showed
significant wound healing activity by excision wound model and comparable with that of the reference standards and control bases.

22) Patil SB.,et.al,(2009), studied the wound healing activity of Marketed Formulations on Excision wound models in Albino Rats. Results shows that the formulation has significantly higher contraction rate and shortened epithelization period in the models. In the excision mode 99% healing on sixteenth day compared to 85% and 75% of healing with silver sulfadiazine and control respectively.

23) Prasad MS., et. al,(2011), studied the wound healing activity of methanolic leaf extract of *Pongamia pinnata* in albino rats using excision and incision wound models. 200mg/kg/day of leaf extract of *Pongamia pinnata* was evaluated for its wound healing activity and compared with povidone iodide (standard). Ointment prepared from the methanolic leaf extract has significant wound healing activity, which was comparable to that of standard marketed preparation.

24) Rathi BS., et. al,(2006), evaluated the aqueous leaves extract of *Moringa oleifera* for wound healing activity in albino rats. Aqueous extract of leaves of *Moringa oleifera* was studied at dose level of 300mg/kg body weight using resutured incision, excision and dead space wound model in rats. Significant increase in wound closer rate, skin breaking strength, granuloma breaking strength, hydroxyl proline content and decrease in scar area was observed.

26) Shamina Azeez, et. al,(2007), studied the wound healing effect of *Areca catechu* extracts on different wound models in Wistar rats. To study the wound healing effect of extracts of *areca catechu* i.e., alkaloid of areca, polyphenols of areca, a combination of both and synthetic arecoline hydro bromide were used. The arecoline alkaloid, polyphenol of areca and the combined formulation enhanced the breaking strength in incision wound model. All the extracts increased the wound contraction on the 4th and 16th day and the period of epithelization.
27) Shanbhag TV., et. al,(2006), studied the wound healing effect of alcoholic extract of *Kaempferia galanga (K. galanga)* and its effect in dexamethasone suppressed wound healing in Wistar rats. Three wound models viz. incision, excision and dead space wounds were used in the study. The parameters studied were breaking strength in case of incision wounds, epithelialization and wound contraction in case of excision wound and granulation tissue dry weight, breaking strength and hydroxyproline content in case of dead space wound. The dexamethasone treated group showed a significant(P<0.001) reduction in the wound breaking strength when compared to control group in incision type of wound model. Co administration of *K. galanga* with dexamethasone had significantly (P<0.001) increased the breaking strength of dexamethasone treated group.

28) Sharma S., et.al. (2009), studied the wound healing activity of the ether- chloroform Benzene- 95% Extract of *Momordica Charantia* Fruits in albino rats. 1%w/v of the 50% benzene Momordica fruit extract significantly increased the rate of wound closure and rate of epithelisation. The wound was healed in very efficient manner that is very close to the standard Betadine.

29) Shenoy AM., et.al, (2011), studied the wound healing activity of ethanol and aqueous extract of *H. indicum* leaves in wistar rats. Results shows that aqueous and Ethanolic leaf extract shows significant wound healing activity against all the three wound models.

30) Shikha Srivastava , et. al, (2009), studied the wound healing activity of Polyherbal formulation prepared by using the extracts of *Curcuma longa, Tridax procumbens* and *Eclipta alba*. The ointment formulations containing extracts of the above mentioned herbs formulated and their wound healing activity was evaluated on the experimentally induced open wound in albino rats. It was found that treated wound showed the faster rate of wound contraction than the control and wound contractions increase with the concentration of herbal extracts.

31) Shreedevi MS., et. al,(2011), evaluated the wound healing activity of Polyherbal Siddha formulation in excision and incision wound model in Wistar rats. In excision wound models *Siddha Kalimbu or Ointment* produce a significant decrease in the
period of epithelization When compared to control. Framycetin skin cream which is used as a standard also produce significant reduction in the period of epithelization.

32) Shukla A., et. al.(1999), studied in vivo and in vitro wound healing activity of asiaticoside isolated from *Centella asiatica*. In guinea pig punch wounds topical applications of 0.2% solution of asiaticoside produced 56% increase in hydroxyproline, 57% increase in tensile strength, increased collagen content and better epithelisation. Asiaticoside exhibits significant wound healing activity in normal as well as delayed healing models.

33) Solanki Renu et. al, (2011), studied that the Medicinal plants are a rich source of active ingredients and provide a safer and cost effective way to treat skin diseases. This article throws light on the use of medicinal plants in the treatment of skin diseases in different regions of the world.

34) Subhashini S., et. al,(2011), investigated the phytochemical properties and wound healing activity of *Adhatoda vasica* leave in Swiss albino rats. Five different solvent extracts were prepared from the leaves of the plant. Methanol, ethanol, ethyl acetate, chloroform and hexane were used for the extraction of the active ingredients. Excision wound model on Swiss albino mice was used to assess the wound healing activity of the leaves. Remarkable wound healing activity was observed with the ointment formulation of the methanol extract at 1% concentration.

35) Subramaniam Ramya et. al, (2011), Malayali’s in his area studied the effect of large number of the plant extracts, pastes and decoctions to heal wound cuts. The investigation resulted in the identification of the 82 medicinal plants across 39 families to heal wound cuts.

36) Swati Rawat., et. al. (2011), developed and studied the wound healing activity of an Ayurvedic Formulation on excision and incision models in rats. wound-healing activity was assessed by the rate of period of epithelialization and skin-breaking strength. Histological study of the granulation tissue was carried out to know the extent of collagen formation in the wound tissue. The treated animals showed significant reduction in the wound area up to (P<0.001) and faster rate of
epithelialisation (23.17±0.54). In an incision wound model, formulation treated animals demonstrated significant skin-breaking strength up to 420.33±5.92. Ayurvedic formulation posses potent wound healing activity, which could be a good choice of remedy for wound healing but less potent than standard Nitrofurazone.

37) Tambekar DH., et. al, (2010), studied the effect of various preparations commonly used in ayurvedic system of medicine in treatment of various infectious diseases such as Pashanbhed churna, Arjuna churna, Bilba churna, Gokharu churna, Trikatu churna were investigated for antibacterial potential by disc diffusion method against bacterial pathogens such as *Escherichia coli*, *Staphylococcus aureus*, *Enterobacter aerogenes*, *Pseudomonas aeruginosa*, *Bacillus subtilis*, *Klebsiella pneumoniae*, *Salmonella typhi*, *Staphylococcus epidermidis*, *Salmonella typhimurium* and *Proteus vulgaris*. The results shows that these herbal preparations not only supplement of the diet but also an alternative in the treatment and control of enteric bacterial infection.

38) Vijaybaskaran M., et. al,(2011), studied the wound healing activity of topically applied ethanol extract of *Pseudarthria viscida* in wistar rat by excision wound model for a period of 12 days. The extract was prepared as ointment form (5 and 10% w/w) and applied on Wistar rats. Neomycin ointment 0.5% w/w was used as standard drug. Both the ointments (5% and 10% w/w) of *Pseudarthria viscida* extract promoted the wound-healing activity significantly when compared to the standard drug.

39) Vinothapooshan G., et. al.(2010), studied wound healing effect of various extracts of *Adhatoda vasica*. Methanolic, chloroform and ether extracts of *Adhatoda Vasica* plants were evaluated for its wound healing activity in the form of ointment dosage form in excision wound model in rats. The methanolic extract ointment of *A. vasica* showed significant effect in excision wound model as compared to standard drug and other two extracts of ointment.

40) Vishal Gupta, et. al, (2011), evaluated the wound healing activity of herbal drug combination of *Rubia cordifolia*, *Centella asiatica*, *Terminalia bellerica*, *Plumbago*
zeylanica and Withania somnifera. The wound healing activity was evaluated by forming the drug in ointment dosage form and then compared with a marketed formulation **Soframycin Cream** as a reference drug. The ointment formulated with the herbal drugs was observed to promote the healing of wound in animals.

41) Viswanand V., et. al.(2011), studied the antimicrobial potential of herbal medicines. The problem of microbial resistance is growing and the outlook for the use of antimicrobial drugs in the future is still uncertain. Therefore, actions must be taken to control the use of antibiotics. Numerous studies have been done on herbs, confirming their potential antimicrobial property against microorganisms.